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The unsteady problem of diffraction of weak plane shock waves around a con- 
tour of arbitrary shape was investigated and solved in [l and 23. In the 
present paper the results of [l and 21 are generalized to two-dimensional 
unsteady problems of diffraction of cylindrical weak shock waves and elastic 
waves. General theorems are adduced which make possible the Investigation 
and solution of the diffraction problems in the general formulation. 

The solutions of a number of diffraction problems are given In terms of 
quadratures by a common method which includes the second approxlmatlon. Some 
of these problems were solved by other authors in the linear approximation by 
various artificial means. 

1. Bormulrtion ur4 rolutlon of two-Aimonrlonrl problem@, We consider 

the diffraction of a cylindrical weak shock wave at an infinite cylinder of 

arbitrary cross section when the wave front Is parallel to the axis of the 

cylinder. The diffraction problem is clearly two-dimensional. 

The intensity of the incident shock wave is characterized by the parameter 

a= Ap/(pa" 1, where P is the density of the medium, a the velocity of 

scund in the medium, Ap the pressure difference across the front of the 

incident cylindrical shock wave S , and O. will be assumed small. 

We choose as lnltial parameters of the problem the velocity of propagation 

of the Incident wave, which in the present cases coincides with the velocity 

of sound a in the medium, and the maximum diameter a of the cross section 

of the cylinder C . Let S- denote the front of the reflected shock wave, 

a% ~the velocity potential of the incident wave and let the diffraction 

begin at t = 0 , where t Is the time. 

Under the assumption that the >low of the shock wave around the contour 

C la irrotatFona1 and isentropic, then a dimensionless fcrmulation the 

problem of diffraction may be reduced to the determination of the perturbatia? 
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velocity potential (p(x,u,~), which satisfies with an accuracy up to quanti- 

ties of the third order the equation [2] 

and the conditions 

4 
3T=-a an t!+. + e,’ (s, z) on C 

cp=o for 780, on S- for T>O 
(1.2) 

Here k Is the adiabatic coefficient, (n,s) is the natural system of co- 

ordinates connected with the contour, c(s,~) is the magnitude of the defor- 

mation of the contour C under the Influence of the incident wave 

8 (s, 4 = kp (s, 4 or E(S,T) =he$ (ho = - p&1) (1.3) 

where p Is the pressure on the contour created by the incident and reflected 

waves, and kl Is the coefficient of rigidity of the contour, which Is assumed 

to be known. 

We will solve the system (1.1), (1.2) by setting 

9 (59 39 4 = (Plb~Y, 4 +cpa (5, y, %I + * * - (1.4) 

where 'pl Is a quantity which Is of the tth order In the small parameter c. 

Substituting (1.4) Into (l-l), (1.2), we obtain the following system of 

equations for the aotentlals Q and mz : 

(1.5) 

'p1= cPa=O for Z<O, on S- for Z>O 

where F Is the right-hand side of Equation (1.1) for cp = ml(x,v,~) . 

The following theorem may be proved by the method of [1] : 

Theorem 1. The two-dimensional problem described by the system 

(1.5) for the diffraction of a cylindrical weak shock wave at a cylinder of 

arbitrary cross section C is equivalent to two.mlxed Cauchy problems for 

the functions rcl and cps in the space (X,1/,7) , also describable by the 

system (1.5), or is equivalent to the auxiliary external problem of super- 

sonic flow of a gas at Mach number Mu = J2 and small angle of attack about 

a hollow cylinder corresponding to the contour C and semi-infinite along 

the T-axls(T>O) . 

The equation of the leading edge cf the semi-infinite cylinder takes the 

form 



r =z A (5, ~1, Y=m (1.6) 
where T = A is the equation of the Incident wave front and y = f(x) is 

the equation of the contour 0 . 

By virtue of Theorem 1 we will solve the Cauchy problem (1.5) by Volterra's 

method I33 . Then for the deters&nation of R and cps on the surface of the 

hollow semi-infinite cylinder in the auxiliary problem we obtain the lntegro- 

differential equations 

where C Is the portion of the surface of the cylinder which Is cut out by 

the cone of influence from the point (xc, yc, -TV), P Is the volume bounded 

by the surface C z the surface of the cone of influence and the portion of 

the wave surface in the auxiliary problem which la cut out by the given cone 

of influence, and Y is the Volterra function 

JJ = In @o-r)+ v fzo--r)*-~(5--z)~-~u*-~~g 

y’(Rl - @* + fuo - u)* (f-8) 

!Phe potentials p, and pa atan arbitrary point of the perturbed reg+on 

are expressed In quadratures through the values m1 and ms on the surface 

of the cylinder. 

In this manner the solution of the diffraction problem formulated above 

is reduced to the solution of Wquatlon (1.7). In solving (1.7) numerically 

it is convenient to replace the singular function ZIY/?I~ by the functions 

s U.9) 
H (To - r, &I - 2, yo - yf = ; dz, &(zo - %Yo - y, x0 -x) = s K dr 

which are contfnuous in the whole region Z , including its boundary, and 

which vanishes at the Point (.r,,,&,,?d) lying on the surface of the cylinder 

of the auxiliary problem. Equations (1.7) are then reduced to nonsingular 

equations for the potentials rpI and cpo . 

2. Solution of p4Hlou.W two=bimauionU dU?rrotlon pro81wuo 1. We 
shall consider the diffraction of a cylindrical weak shock wave at a semi- 

infinite thin plate fy = 0, x > 0). We take the center of the cylindrical 

wave to be at the point <X = ?%, Y = - R) and the characteristic linear 

dimension to be equal to 1 = c*l set . Furthermore, we shall assume that 

kl-O. 
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In view of Theorem 1 the given problem is equivalent to the problem of 

flow of a supersonic gas stream at Ml= J2 and a small angle of atack around 

a semi-infinite plane wing (Fig. 1) bounded by the curves 

z = - R + 1/(x - m)” + .@, y = 0, X>O (2.1) 
The auxiliary problem will be solved by Volterra’s method. 

The potentials q, and rp, at an arbitrary 

point (xc , bi, , TV ) of the perturbed region, 

for which the region of integration Z,does 

not extend beyond the wing, may be expressed 

immediately by Formulas 

Fig. 1 

In order to determine 

the perturbed region for 

wing, It is necessary to 

the wing. Thus we have 

the potentials ep, and (p2 at an arbitrery polnt of 

which the region of integration extends beyond the 

take into account the influence of the aide edge of 

Here x1 denotes the area AamLM and a the area BFEB in Fig. 1, 
while Q1 and Q2 denote the values of acpl/ag and a(p2/av , respectively, 

on 0 . 

In order to determine Q, and Q2 ne write the expressions for cpL and 

‘pz in the region o . Since ipl and c++ are equal to zero on o , then we 

obtain the following integral equations for the determination of Q1 and Qz: 

Here cr,+& is the region of Integration cut out by the cone of influence 

(Pig.1) from the point (xc, 0, ~c) lying in CJ and r, is the corresponding 

volume. 
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We introduce the characteristic coordinates 

p = z -$- 2, v = z - 5 

The transformation of Equations (2.4) can be carried out without dlffl- 

culty [4], and flnally we obtain 

(2.5) 

where C, is the area AB@A of the portion of the surface X1 in Yg. 1. 

For known values of cpl and ~~ the pressure p at any point of the per- 

turbed region may be determined, right up to the surface of the wing. 

Fey kl # 0 but sufficiently small, the solution may be represented as 

a series in RI , or thrnay be determined from the lntegro-differential 

equations. 

2. We now shall consider a more general problem of the diffraction of a 

cylindrical weak shock wave at a plate of unit length moving along the x-axis 

with an arbitrary velocity U at zero 

,Y angle of attack. 
1 n- 

By virtue of Theorem 1 we will solve 

the auxiliary problem of flow around a 

semi-infinite wing (Fig. 2) bounded by 

the curves 

Fig. 2 

We devlde 

so forth, as 

The solution 

the surface cf the wing into subdomains (l), (2), (3), (4) and 
shown in Fig. 2, and we restrict ourselves to the case ,V,,< 1. 

of the problem for the case MO> 1 is obtained even more easily, 

and the solution for a plane wave is described in [I]. 

As in the solution of the prqvipus perticular problem, we find that: 

a) at the points of the perturbed region which are influenced by the 

points on the surface of the wing lying in the subdomains (1) and (2), or 

(3), the potent,lals cpl and (p2 are of the sarhe form as solutions (2.2) and 

(2.5), respectively, and are obtained in a slmllar manner. 

b) at those points of the perturbed region which are influenced by poinr;s 

on the sur3face of the wing lying in the subdomain (4), the values of rpl and 

vz are equal to 
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(2.7) 

where & 1s the area NAF~~FBN, the portion of the surface C, in 
Fig. 2. 

It can be shown that the problem of diffraction of plane or cylindrical 

weak shock waves on a cascade of flat-plate profiles may be similarly solved 

by quadratures. 

lf lnstesd of a plate we have a thin airfoil, then the problem of dif- 

fraction is also solvable by quadraturea, but only for U = 0 . 

3. Domnulrtlon and rolution oi two-dlmemional problanm of dliiorotlon 
or 0~1lirrdr10aa alartlo uW.8. In investigating the problems of diffraction 

of elastic waves we shall assume that the e1astZ.c medium obeys a nonlinear 

law of elasticity, in particular, the law of Murnaghan [S] 

where X, p, $,, fIa and $= are elastic ccnstants, and A*, Al and Aa are 

the invariant8 of the deformation tensor. The expresstins for uY1, a,,, a,, 

and us, are obtained from (3.1) by cyclic permutations. MoPeover;we shall 

treat those elastic media for which b1 = &, = 0 , and assuming small defor- 

mations, we shall Investigate the effect of the nonlinear terms in (3.1). 

For simplicity we shall consider that the incident cylindrical elastic 

wave is describable by potentials ai, and lo of longitudinal and trans- 

verse waves*of the form 

Q, = f (2, Yc 29 4, 'PO = 0, z = @/I, aoa = (hf +)/p (3.2) 

where oc Is the velocity of propagation of longitudinal wave, p is the 

density of the medium, and 1 is the characteristic linear dimension of the 

problem. 

Let the cylindrical elastic wave (3.2) impinge upon a contour C of 

arbitrary shape and let diffract&on commence at T - 0 (t = 0). 

We introduce the potentials. P and Y of the longitudinal and trans- 

verse waves 

(3.3) 
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where w is the vector of the displacement of an arbitrary point of the 

elastic medium. 

Then in the absence of external forces the equations of motion of the 

elastic medium (3.1) may be put in terms of dimensionless variables in the 

form 

where b Is the dimensionless velocity of propagation of 

and 
cp -_ CD - CD,, Y = Y - u’, 

(34 

transverse waves, 

(3.51 

We shall solve the problem for the following boundary and initial con- 

ditions : 
q1 (s, 4 = 8 ($9 4, q&, -c) = fl (4 4 On c (3.6) 

where? n, s are the natural coordinates associated with the contour, gl, q2 

are the components of the displacement vector along the normal and tangent 

to the contour, respectively, and c(s,~) is the magnitude of the deformation 

of the contour C under the action of the elastic wave. For simplicity we 

shall assume that 

E (s, z) = ‘/s &(5xX f bj/J, fl = &%I (3.7) 

and S is the front of the reflected wave, and kz and k3 are constants. 

We shall solve the problems (3.4), (3.6) and (3.7) by setting 

(3.8) 

& = k, (A + cl), 

where F(x,y,.r) denotes the right-hand side of Equation (3.4) for tp = Q . 

As in the solution of the diffraction of plane weak shock waves, we ha.de 

the following Theorem [ 21 : 
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Theorem 2. The diffraction of a cylindrical elastic wave on 

the contour C , described by the system (3.91, is equivalent to the external 
problem of two supersonlc flows of an ideal gas, at MI =J2 and Me= dpP 

overahollow cylinder g corresponding to the contour C and semi-infinite 

in extent along the r-axis (z > O), or it is equivalent to three nixed 

Cauchy problems, which are also described by the system (3.9) in the space 

( X,Yr7). 

The equation of the lead@ edge of the cylinder in the auxiliary problem 

is given by Equation (1.6). 

By virtue of Theorem 2 we can make use of Volterra's method to determine 

91, F2 and Q1 . We then obtain for rp,, cpe and $X on the surface of the 

Cylinder Q a system of two-dimensional integro-differential equations of 

the form 

where x1 and C, are the.portlons of the surface of' the cylinder cut out 

by the cones of influence 

(To - 2)2 - (x0 - x)” - (y, - y)” = 0 

b-2 (z, - z)” - (ST* - s)2 - (y, - y)” = 0 

from the point (x,,, y,, 7O ) lying on the surface of the cylinder, V is the 

Volterra function (1.8)~ and 

v, (z, - z, X0 - r, y0 - y) = v [b (z, - 4, 30 - z, yo - Yl (3.W 

Thus the general diffraction problem reduces to the solution of the system 

(3.101, which for a given contour C may be solved numerically, or which 

for certain contours C can be obtained by quadratures. 

We shall consider particular problems of diffraction of elastic cylindri- 

cal waves. 

I". Let us consider the problem of diffraction of a cylindrical elastic 
wave on a semi-infinite cut (y= 0, z>,Ot, which is rigidly attached to the 
surrounding medium. Let the center of the wave be at the point (x = m, 
b, 31-R). 

In accordance with Theorem 2, instead of the diffraction problem we shall 
solve two auxiliary mixed 

P 
roblems (Flg.l), in which the half-plane 4 1s 

bounded by the curves (2.1 . 
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Then following Volterra’s method for the solution of the three-dimensional 
Cauchy problem for the potentials ‘pl and *I at an arbitrary point (x0 ,O, 70 ) , 
for which the region of integration does not extend beyond the boundaries of 
the half-plane Q , ne obtain Expressions 

Similarly, for the point (X 0 ,O, TV ) for which the region of integration 
exceeds the limits of the half-plane 

where Ca and C, 
as shown in Fig. 1. 

are portions of the surfaces I1 and X2 , or A ‘E’i”‘.TLI*.4 ’ , 

Let us consider Equations (3.12). Introducing the characteristic coordi- 
nates ~fT+X,V=?-x in the first of equations (3.12) and the corre- 
sponding coordinates in the second equation, we can snow that the derivative 
may be taken outside the double Integral. 
can put Equations (3.12) In the form 

Then eliminating $1 and tih, we 

where F1 and ~~ are known quadratures in Equatlons (3.12). 

It can be shown that 

O<b<l 

(3.G) 

Fig. 3 

and consequently Equations (3.14) are solva- 
ble for ‘Pi and iQ1, and an approximate 
solution may be obtained by iteration. The 
first iteration provides approximate expres- 
sions for cp, and JI1 of acceptable accuracy 
for practical purposes. Successive Iter- 
ations contribute not more than 2 - 3% over 
a wide range of variations of the parameter b. 

The system (3.13) Is solved in a similar 
manner, 

The determination of the potential rp, 
does not differ In principle from the deter- 
mination of ‘pz in the problems solved in 
Section 2 Subsection 1, and It has the form 
(2.2) or (2.3). 
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The problem for Y, # 0 Is solved in an analogous fashion. 

2. Let a longitudinal elastic cylindrical wave impinge on a plate of 
unit length(0 <x< 1), which moves with velocity U along the x-axis. 

By virtue of Theorem 2 we will solve the auxiliary Cauchy problem. 

where cc' denotes the area Nfi'F'_D'G'P'B'N in Fig. 2. 

Equations (3.16) are solved for tpI and 
or (3.13). h the case 

+I just as were Equations (3.12) 

The solution for 
U = U(c) the solution is constructed analogously. 

X,# 0 and X,# 0 (but sufficiently small) may be obtained 
in the form of series in X, and X,. 

The solution of the problem of diffraction of elastic waves on cascaded 
profiles consisting of rectilinear segments or on n slits Is solved simi- 
larly, 

We shall consider the problem of diffraction of a circular-cylindrical 
ela?tic wave on a wedge of half-angle O<: 3 .<n /2. Let the center of the 
cylindrical wave lie on the axis of symmetry of the wedge and outside the 
wedge. 

By virtue of Theorem 2 we shall solve the auxiliary mixed Cauchy problem 
for the potentials rpl and !I~, or the problem of flow around the corre- 
sponding three-dimensional semi-infinite (T&()j corner with the plane of 
symmetry y = 0 (Fig.3). 

Solving the given problem described by the equations and boundary and 
initial conditions (3.9) by Volterra's method and noting that 

qp1 (r, y, T) = -tcP1 (5 - ?!, $7 $1 (5, Y, t) I== -- *lfG - Y, 4 (3.17) 

we obtain the following equations for cpl and $, : 

(3.18) 

where 

and &d 9 Ea’ are portions of the surfaces 
in Fig. 3), bounded by the curves 

XI and & (NACBN and NA'C'B'N 

(3.19) 

t = z,-- b-'v(qlu -- (11)s co9 8 .-:- (410 + /Q sir+ p, z -=1 i$ (ql,,, f& = 0, y>o (.il'C) 

respectively. 

Eliminating cpl and *I from the integrals of Equations (3.18), we obtain 
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where F3 and F1 are known integrals. 

Equations (3.20) for ‘pl and $1 may be solved by method of iteration, as 
in the preceding problems. 

For b = 0 the integrals in Equations (3.20) vanish and I~= 0 . The 
expression for rpl gives the solution of the problem of diffraction of a 
weak shock wave or acoustic wave on the wedge. 

Note. The author takes this opportunity to note a correction to the 
paper [2], where In the solution of the problem of diffract'on of a weak 
shock wave on a prolate spheroid, the value 
of the spheroid. 

< = 1 was taken for the surface 
Actually the surface of the spheroid should be described 

by Equation E = (1, a>l, where c Is an arbitrary constant. For 5 = 1 
the prolate spheroid dsgenerates into a section of the s-axis. 

In conclusion, the author thanks E.A. Ivanov for a number of valuable 
remarks he made in reviewing this paper. 
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