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The unsteady problem of diffraction of weak plane shock waves around a con-
tour of arbltrary shape was investigated and solved in [1 and 2]. In the
present paper the results of [1 and 2] are generalized to two-dimenslcnal
unsteady problems of diffraction of cylindrical weak shock waves and elastilc
waves. General theorems are adduced which make possible the linvestigation
and solution of the diffraction problems in the general formulation.

The solutions of a number of diffraction problems are glven ln terms of
quadratures by a common method which Includes the second approximatlon. Some
of these problems were solved by other authors 1n the linear approximation by
varlous artificlal means.

1, Pormulation and selution of two-dimensional problems., We consider
the diffraction of a cylindrical weak shock wave at an infinite cylinder of
arbitrary cross section when the wave front 1s parallel to the axis of the
cylinder. The diffraction problem is clearly two-dimenslonal.

The intensity of the incldent shock wave 1s characterlzed by the parameter
a = ap/{pa®), where p 1is the density of the medium, g the velocity of
sound in the medlum, Ap the pressure difference across the front of the
incident cylindrical shock wave § , and g will be assumed small.

We choose as initial parameters of the problem the velocity of propagation
of the incident wave, which in the present cases colncldes with the velocity
of sound g 1in the medium, and the maximum diameter 2] of the cross section
of the cylinder ¢ . Let S~ denote the front of the reflected shock wave,
ad, -the veloclty potential of the Inclident wave and let the diifraction
begin at ¢ = O , where ¢ 1s the tlme.

Under the assumption that the flow of the shock wave around the contour
¢ 1is irrotational and isentropic, then a dimensionless fcrmulation the
problem of diffraction may be reduced to the determination of the perturbation
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362 1.G. Filippov

veloclity potential q)(x,y,'r), which satisfies with an accuracy up to quanti-
ties of the third order the equation [ 2]

% op ¢ dp d¢ | dp % at
9z? + 0y"' ars =k —1) 5 5 +2(az For T By oy ayar) =T (1)
and the conditions
d a(D
_8%': o+8r (5,7 onc

(1.2)
¢=0 for t<0, on S~ for v>0

Here x 1s the adiabatic coefficlent, (n,s) 1s the natural system of co-
ordinates connected with the contour, ¢(s,v) is the magnitude of the defor-
mation of the contour (¢ under the influence of the incident wave

e(s, ) =kp(sV) o e(s,7) = A e (o=—patk) (1.3)

where p 1s the pressure on the contour created by the incident and reflected
waves, and 4%, 1s the coeffliclent of rigidity of the contour, which is assumed
to be known.

We will solve the system (2.1), (1.2) by setting

(2, %% =0 (2,91 +¢(z, 9,7 + ... (1.4)

where ¢, 1s a quantity which 1s of the {th order in the small parameter a.

Substituting (1.4) into (1.1), (1.2), we obtain the following system of
equations for the potentlals ¢, and ¢,

o, Yo P _, T o _ 2% _p(z, 9,7

ay? - FIZ ay? o2

0 il d 8%

N N T
(p1=(p2=0 for <0, on §- for T>0

where F 15 the right-hand side of Eguation (1.1) for o = g, (x,y,7) .
The following theorem may be proved by the method of [1]

Theorem 1. The two-dimensional problem described by the system
(1.5) for the diffraction of a cylindrical weak shock wave at a cylinder of
arbitrary cross section ( 1is equivalent to two.mixed €auchy problems for
the functions ¢, and g in the space (x,y,T) , also describable by the
system (1.5), or is equivalent to the auxillary external problem of super-
sonic flow of a gas at Mach number 4, = /2 and small angle of attack about
a hollow cylinder corresponding to the contour ¢ and semi-infinite along
the r-axis{(t_>0)

The equation of the leading edge cf the seml-infinite cylinder takes the

form
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T=A4(z,9), y=1(a) (1.6)

where 1 =4 1s the equation of the incident wave front and y = r(x) 1s
the equation of the contour ¢ .

By virtue of Theorem 1 we will solve the Cauchy problem (1.5) by Volterra's
method [3]. Then for the determination of ¢, and ¢y on the surface of the
hollow semi-infinite cylinder in the auxiliary problem we obtain the integro-
differential equations

@1 (@ Yo W) = 7 5y ()1 (22 9, ) G —V G2]ds e}
%

8
q)2 (xO’ Yoo 10) = 21""7‘,‘"{ S[q)g (.'t, y, T) g—i —_ (17)
ﬂ

(g g+ [ e
T

where £ 1is the portion of the surface of the cylinder which is cut out by
the cone of influence from the poeint {(xy, ¥o» To)» T 18 the volume bounded
by the surface I , the surface of the cone of influence and the portion of
the wave surface in the auxiliary problem which 1s cut out by the given cone
of influence, and ¥ 1s the Volterra function

V= g (Po=0+ V Go— 1P —(@m—2f—(yo—yF
V@ —2F+wo—yP
The potentials ¢, and ¢, at an arbitrary point of the perturbed region

are expressed in quadratures through the values ¢, and g, on the surface
of the cylinder.

(1.8)

In this manner the solution of the diffraction problem formulated above
18 reduced to the solution of Equation {1.7). In solving (1.7) numerically
it is convenient to replace the singular function 3¥/an by the functions

w (1.9)
Kot z—2p%—9 =g Kth—ts—p5—2)={Kd

which are continuous in the whole region I , including its boundary, and
which vanishes at the point (xb,yb,To) lying on the surface of the cylinder
of the auxiliary problem. Equations (1.7) are then reduced to nonsingular
equations for the potentials ¢, and ¢, .

2. Solution of partioular two-dimensional diffraotion problems. 1. We
shall consider the diffraction of a cylindrical weak shock wave at a semi-
infinite thin plate {y = 0, £ > (). We take the center of the cylindrical
wave to be at the point (z = m, y = — R) and the characteristic linear
dimension to be equal to 1 = q+1 sec . Purthermore, we shall assume that
ky= O .
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In view of Theorem 1 the given problem is equivalent to the problem of
flow of a supersonic gas stream at My= /2 and a small angle of atack around
a semi-infinite plane wing (Fig. 1) bounded by the curves

= —R+V{i&—m?+ R, y=0, z>0 (2.1)
The auxiliary problem will be solved by Volterra's method.

The potentials ¢, and ¢, at an arbltrary
point ({x,,ys»To) of the perturbed region,
for which the region of integration z, does
not extend beyond the wing, may be expressed
immedlately by Formulas

My aV
@1 (%o Yo Ty) = T KS 8y061’0 dzdt

p» 2.2)
1 ov
Fle. 1 Py (Zg) Yor To) = ;SSSF (z, 4, 7) 5;;dxdy dt
T

In order to determine the potentlals ¢, and ¢, &t an arbitrary point of
the perturbed region for which the region of integration extends teyond the
wing, 1t 1s necessary to take into account the Influence of the side edge of
the wing. Thus we have

Py (Zgs Ygr To) =%SS?—;§%d,’cd SSQ; —drdt
‘ ‘ (2.3)
P2 (Zo) Yor To) "‘SSQ" V_ izdr +%&SSF(z, n r)g-%da:dydr

T

Here %, denotes the area 4B¥mDp4 and o the area pJFEF 1n Fig, 1,
while ¢, and ¢, dencte the values of 3y, /3y and 3gp,/dy , respectively,
on ¢ .

In order to determine ¢, and {, we write the expressions for g, and
v, Iin the region ¢ . Since g, and o, are equal to zero on o , then we
obtain the following integral equations for the determlnation of ¢, and {,:

- av (¢ 0Dy oV
SSQI-OTdedx oo \\ Y dad - 0

" , (2.4)
“() *~d$d1’*\\&F(:c, Y T)%dxdydr = {)
A e

Here o0, +I, 1s the reglon of integratlon cut out by the cone of influence
(Fig.1) from the point {(x,, O, 7,) lylng in ¢ and 7, is the corresponding

volume.
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We introduce the characteristic coordinates
p=1+r v=1—=2

The transformation of Equations (2.4) can be carried out without diffi-
culty [4], and finally we obtain

0D, oV
‘\P(‘Isy»T):i -—.——dl'd'[
P ig 9 0% (2.5)
1(7 oV ¢ v
T Sy

where I,, 1s the area A4BCDA of the portion of the surface I, in Tig. 1.

For known values of ¢, and ¢, the pressure p at any point of the per-
turbed region may be determined, right up to the surface of the wing.

For x, # O but sufficlently small, the solution may be represented as
a serles in %, , or %% may be determined from the integro-differential
equations.

2. We now shall consider a more general problem of the diffractlon of a
cylindrical weak shock wave at a plate of unit length moving along the x-axis
wlth an arbitrary veloclty U at zero
angle of attack.

By virtue of Theorem 1 we will solve
the auxiliary problem of flow around a
semi-infinite wing (Fig. 2) bounded by
the curves

T=—R+ 1} (x—m?*+ R (2.0)
r=Myv, z=14+ Mgz, M,=Ua

Fig. 2

We devide the surface cf the wing into subdomains (1), (2), (3), (4) and
so forth, as shown in Fig. 2, and we restrilct ourselves to the case M,< 1.
The solutlion of the problem for the case ¥,>1 1s obtalned even more easily,
and the solution for a plane wave 1s descrilbed in [1].

As in the solution of the previous perticular problem, we find that:

a) at the points of the perturbed region which are influenccd by the
points on the surface of the wing lying in the subdomains (1) and (2), or
{(3), the potentlals @, and o, are of the same form as solutlons (2.2) and
{2.5), respectively, and are obtalned in a similar manner.

b) at those points of the perturbed region which are influenced by points
on the surface of the wing lying in the subdomain (4), the values of v, and
g, are equal to
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@y IV
@1 (xoa Yo, to) = % &S '@Rmdx dt (2.7)
ZH+EC
1 av 14
P2 (Zy) Yo To) = ;{873317 (=, v, 1:)3;0- dedydt— SS F(z, 0, t)mdxdt}
E—E,

(2.8)
where %, 1s the area NAFDmCFBN, the portion of the surface I, in
Fig. 2.

1t can be shown that the problem of diffraction of plane or cylindrical
weak shock waves on & cascade of f{lat-plate profiles may be similarly solved
by quadratures.

If instead of a plate we have a thin airfoll, then the problem of dif-
fraction is also solvable by guadratures, but only for U = O .

3. Pormulation and sclution of two-dimensional problems of diffraction
of oylindrioal elastic waves. In investigating the problems of diffraction
of elastic waves we shall assume that the elastic medium obeys & nonlinesar
law of elastlicity, in particular, the law of Murnaghan [5]

Oxx = Ay -+ 21 (1 Bi1dg) Bx 1 BaAy? — Brdy 1 Bs (8 + Ve + VB
oxy = P (1 + B1do) &xy + Bs [(exx + Eyy) Exy -+ Vg Exeye] S

where 1, u, By, B, &and g, are elastlc ccnstants, and 4,, 4, and 4, are
the invariants of the deformation tensor. The expressions for o,,, 0,,, 0,,
and ¢,, are obtained from (3.1) by cyclic permutations. Mofeover, we shall
treat those elastic media for which g, =8, = O , and assuming small defor-
mations, we shall investigate the effect of the nonlinear terms in {(3.1).

For simplicity we shall consider that the incident cylindrical elastic
wave 1s describable by potentials ad, and Y, of longltudinal and trans-
verse waves 'of the form

(I)o = f(x, y, z, T), ‘Iro = 0, T = aot/ l, aoz = (;\4 + 2“)/? (3.2)

where g, is the velocity of propagation of iongitudinal wave, p 1s the
density of the medium, and ] 1s the characteristic llnear dimension of the
problem.

Let the cylindrical elastic wave (3.2) impinge upon a contour ¢ of
arbitrary shape and let diffraction commence at 1 = 0 (£ = 0}.

We introduce the potentials, & and Y of the longitudinal and trans-
verse waves

0 , oY I .
a:—a—x——*—@-, aﬂ—a‘y—""g‘;: w'—ﬁ.*—f‘lv (3'3)
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where p 1s the vector of the displacement of an arbitrary point of the
elastic medium.

Then in the absence of external forces the equations of motion of the
elastic medium (3.1) may be put in terms of dimensionless variables in the
form

*p _ P _ 2

Bzt + (’)ys oz = (pao ) (Ag) (3.4)
) 1 ony B
a3 aya —Fam =0 b=

where p 1s the dimensionless velocity of propagation of transverse waves,
and
=0 —0, Y=Y -V, (3.5)

We shall solve the problem for the following boundary and initial con-

ditions:
(50 =257, g1 =FH(71 onC (3.6)

where n, g are the natural coordinates associated with the contour, ¢,, g,
are the components of the displacement vector along the normal and tangent
to the contour, respectively, and e{g,r) 1s the magnitude of the deformation
of the contour (¢ under the action of the elastic wave. For simpliclty we
shall assume that

e (8, T) = Yy its(Gex + Syy)s f1 = K3Sen (3.7)
and § 1s the front of the reflected wave, and %, and %, are constants,.

We shall solve the problems {3.4), (3.6) and {3.7) by setting

Pz, Yy, T =9, (2.9, 1) +qs(z. 9 1)+ ...

Yz y V) =% (59 1) (3.8)
The system of equations for g, gz, §, becomes
¥ % 0%z __ 1 63'171 _
Ay — 6321 =0, Ag, — Fot = F(z, y, 1), AP, — o =0
d a(D a % ! a2
a(f: 0+ ‘pl+hl 6:2“’ _agng:}q‘*a% on C
I a@o 091 ha 9 g, (3.9
T %o — as — R TiMbeggg o €
k
M=k (M4 W), M:itu-{i'!?;
QL =@, =P, =0 for 70, wa $=  for >0

where F{x,y,r) denotes the right-hand side of Equation (3.%) for o = g,

As 1n the solution of the diffraction of plane weak shock waves, we have
the following Theorem [ 2]:
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Theorem 2. The diffraction of a cylindrical elastic wave on
the contour (¢ , described by the system (3.9), is equivalent to the external
problem of two supersonic flows of an ideal gas, at W, =/2 and M,=\1 + 55,
over a hollow cylinder ¢ corresponding £o the contour (¢ and semi-infinite
in extent along the r-axlis (r > O), or it is equivalent to three mixed
Cauchy problems, which are also described by the system (3.9) in the space
(x,ys7) .

The equation of the leading edge of thz cylinder in the auxiliary problem
is gliven by Equation (1.6).

By virtue of Theorem 2 we can make use of Volterra's method to determine
91, 9 and §, . We then obtain for ¢,, @, and ¥, on the surface of the
cylinder @ a system of two-dimensional integro-differential equations of
the form

91 (Zos Yor To) = o 61:0{ [ ———Vaq)l] dsdt

1 2 v a aq, 07 .
Py (xo: Yor 170) RN %S[‘P 255 3q,):+ A ;;1 3:;1 (3.10)

1‘3?;:& ] dsdv + R:SSF(% Ys T)dedydr}

Py (2o, Yos To) = z:: 5o {S S {1{;1 W _ ‘?’;‘] ds dr}
I,

where T, and I, are the portions of the surface of the cylinder cut out
by the cones of influence

== (g — 2 — (o~ =0
bty — 1 — (g — 2) — (Yo — )" =0
from the point (xb, Vo s To) lying on the surface of the cylinder, ¥ 1s the
Volterra function (1.8), and

Vi(to— T, 2o — 2,y —y) =V b (1 — 1), & — T Y, — yl (3.19)

Thus the general diffraction problem reduces to the solution of the system
(3.10), which for a given contour ( may be solved numerically, or which
for certain contours (¢ can be cobtalned by quadratures.

We shall consider particular problems of diffraction of elastic eylindri-

cal waves,
1. ‘Let us consider the problem of diffraction of a cylindrical elastle
wave on a semi-infinite cut {y = 0, x > 0), which is rigldly attached to the

surrounding medium. Let the center of the wave be at the point (x = m,
v=-R).

In accordance with Theorem 2, instead of the diffraction problem we shall
solve two auxiliary mixed roblems (Fig.1), in which the half-plane @ is
bounded by the curves g
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Then following Volterra's method for the solution of the three-dimensional
Cauchy problem for the potentials ¢, and ¢, at an arbitrary point (xh,o,xa),
for which the reglion of integration does not extend beyond the boundaries of
the half-plane ¢ , we obtain Expressions

1 oy, v o S@CDO o
% (=0, 0, ’°)=“"}TSS’5F5F;’”’“”+TS Ty or, 99T
Z, 1 o
(3.12)
1 SSa‘pl 3V1 iSS 3@0 8V1
Py (24, 0, 1) = w ) Ea—‘..-dzdt-}— ) Bz 97, drdt

Similarly, for the point (xo,O,To) for which the region of integration
exceeds the limits of the half-plane

1 Fpy W o S o®, BV
91 (=0, 0, fd="?553mdw“+'{ S“‘“‘ay It 4F 4T
il Lo ,J.
(3.iu}
- L{{® M 20§ F
e 0 = Y3 5 S anans 2§70 F e
0 20

where I, and I, are portlons of the surfaces %, and %, , or 4'B'¢'D'4’,
as shown in Fig. 1.

Let us conslder Equations {3.12). Introducing the characteristic coordi-
nates pu =1 +x, v=1 -x in the first of equations (3.12) and the corre-
sponding coordinates in the second equation, we can show that the derivative
may be taken outside the double integral. Then eliminating y, and ¢,, we
can put Equatlons (3.12) in the form

i) v a av; .
@1 {z, 0, To)="}?é€3};”SSEﬁ,“d”'5$SS%‘#dxdT + Fy (2, Ty)
I,

Ee (3.14)
1 9 0C v F) o
Py (g, 0, 1)) = — ) 5;; S‘S ﬁdzdr*g; SES P -(:’—T—da: ar’ + Fy (x4, 1)
po 1
where F, and F, are known quadratures in Equations (3.12).
It can be shown that
1 9 SSaV 9 S*avi , 1
?Ezgr—odxdtg;vﬁ*d:cdt <14, OK<b <t
' = (3.15)
1 9 Sav1 aSSaV ‘
"ﬁ?mgz T, T YW <t 0<h<

and consequently Equations (3.14) are solva-
ble for o, and §,, and an approximate
sclution may be obtalned by iteration. The
first iteration provides approximate expres-
sions for ¢, and ¢, of acceptable accuracy
for practical purposes. J3uccessive iter-
atlons contribute not more than 2 — 3% over

a wide range of varlatlons of the parameter p.

The system {3.13) 1s solved in a similar
manner,

The determination of the potential g,
does not differ in principle from the deter-
mination of @, in the problems solved in
Section 2, Subsection 1, and 1t has the form
(2.2) or {2.3).
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The problem for ¥, # O 1s solved in dn analogous fashion.

2. Let a longltudinal elastic cylindrical wave impinge on a plate of
unit length (0 < z <{ 1), which moves with velocity U along the x-axis.

By virtue of Theorem 2 we will solve the auxiliary Cauchy problem.
We divide the surface of the semi-infinite plate into regions (1), (2),

(3), ol (Fig. 2). The potentials g, and y, at points {x,, O, 1,) of
1

regions z and {2), or {3), have the forms {3.12) and (3.13). At points
of reglon (4), however

10ty oV a SSaaDo A

1 (7 0 ) = — ?583 oz 3%, AT T Y) By o, YT
0

1

vy « SS& vy

1 P X
P @0, 0, To) = §S Br ot TR ) G ar, T

o (3

~Q

(3.16)

where £,’ denotes the area NA'FD'C'F'B'N 1in Fig. 2.

Equations (3.16) are solved for ¢, and ¢, Jjust as were Eguations {3.12)
or {3.13). In the case U = y(~) the solution is constructed analogously.
The solution for A, # 0 and A, # O (but sufficlently small) may be obtalned
in the form of serdies 1n 1; and Xi,.

The solution of the problem of diffraction of elastic waves on cascaded
profiles consisting of rectilinear segments or on n slits is solved simi-
larly.

3. We shall consider the problem of diffraction of a c¢ircular-cylindriecal
elastlc wave on a wedge of half-angle 0 {3 {n /2. Let the center of the
cylindrical wave lle on the axis of symmetry of the wedge and outside the
wedge.

By virtue of Theorem 2 we shall solve the auxillary mixed Cauchy problem
for the potentials ¢, and §,, or the problem of flow around the corre-
sponding three-dimensional semi-infilnite (r;g(u corner with the plane of
symmetry y = O (Fig.3).

Solving the given problem described by the equations and boundary and
initial conditions (3.9) by Volterra's method and noting that

{21 (x! Y, T) - '{" P {:Z‘, — Y, T}y 1?1 (xs Y T) e ‘qu (CL‘, Y 1") (3'17)
we obtain the following equations for ¢, and

1 ap, a S a®, v

P (0 Yo W = — ES§ A I D B T

R o (3.18)
1 S apy 9V, a SS 30, 8Vy

Yy {2y Yos To) = n S 94, Wo‘d%df + -y =98, Bg, 97, dq,dt

2T &2 27 2
where
g = z cos B+ ysin B, ge= — zsin B ycos B

and 5,4, Ts are portions of the surfaces %, and T, (N4C5¥ and ¥4'C'B'N
in Fig. 3}, bounded by the curves (3.19)

T == Ty — V{g1o — g% cos? B+ g0+ q)¥sin® B, T=A(q), =0, y >0 (40

T = Tp— b_rV(fho = @)?cos B - (g0 q)Psint B, T A (), g =0, y>0(40)
respectively.
Eliminating o, and ¢, from the integrals of Equations (3.18), we obtain
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1 1 ' 4 a3 \ Wy,
P1 (@0 Yo, T) = — 7w 50— ) Gy, 0T 5 ) \ P15y 9917+ Fy (g, Yo, T)
Z+Zs Iy—Zn’ (3.20)
1 9 av a oV .o
Y1 (20, oy T) = — 7 dqys g S T, oo dgydt 5— Ery S K Y1 g7 29147 + Fy (x5, You To)
+— Dz’ Iyt By

where F, and F, are known integrals.

Equations (3.20) for ¢, and y, may be solved by method of iteration, as
in the preceding problems.

For b = O the integrals in Equatlons (3.20) vanish and y, =0 . The
expression for o, glves the solution of the problem of diffraction of a
weak shock wave or acoustic wave on the wedge.

Note. The author takes thils opportunity to note a correction to the
paper [ 2], where in the solution of the problem of diffraction of a weak
shock wave on a prolate spheroid, the value € =1 was taken for the surface
of the spheroid. Actually the surface of the spheroid should be described
by Equation § —= a, a > 1, where g 1s an arbitrary constant. For € =1
the prolate spheroid d:igenerates into a sectlion of the z-axis.

In conclusion, the author thanks E.A. Ivanov for a number of valuable
remarks he made 1n reviewing thils paper.

BIBLIOGRAPHY

1. Filippov, I.G., K teorii difraktsii slabykh udarnykh voln okolo konturov
proizvol'nol formy (On the theory of diffraction of weak shock waves
at contours of arbitrary shape). puM Vol.27, N 1, 1963.

2. Filippov, 1.G., K teorii lineinykn prostranstvennykh nestatsionarnykh
zadach difraktsii i nekotorye nelineilnye zadachi (On the theory of
linear three-dimensional unsteady problems of diffraction and certain
nonlinear problems). pPMM Vo.27, N2 4, 1963.

3. Goursat, E., Kurs matematicheskogo analiza (A Course in Mathematical
Analysis). Gostekhteoretizdat, Vol.3, Part 1, 1933.

4, Krasil'shchikova, E.A., Krylo konechnogo razmakha v szhimaemom potoke
(The wing of finite span in a compressible flow). M.-L., 1952.

Murnaghan, F., Finite deformation of an elastic solid. Amer. J. Math.,
Vol.59, pp.235-260, 1937.

Translated by F.A.L.



